Reflectance modeling by neural texture synthesis
نویسندگان
چکیده
منابع مشابه
Texture Synthesis Using Convolutional Neural Networks
Here we introduce a new model of natural textures based on the feature spaces of convolutional neural networks optimised for object recognition. Samples from the model are of high perceptual quality demonstrating the generative power of neural networks trained in a purely discriminative fashion. Within the model, textures are represented by the correlations between feature maps in several layer...
متن کاملmodeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
Instant Texture Synthesis by Numbers
Appearance Space Texture Synthesis (ASTS) provides fast texture synthesis by example. Unfortunately, speed is only achieved at the cost of a long pre-processing step. This is tedious for artists and limits the input resolution. In addition, the aggressively pruned search space results in strong artifacts when synthesizing multiple textures under user guidance (Texture-By-Numbers, TBN). In this ...
متن کاملObject-oriented Modeling for the Extraction of Geometry, Texture and Reflectance from Digital Images
A semi-automatic system for extracting topographic features is being migrated to an object-oriented design for better maintainability. For that purpose an object-oriented model of the extracted objects and the extraction methods is required. Moreover an appropriate software component model for the exchange with other systems is needed. We have modeled a class hierarchy for objects, that can be ...
متن کاملTexture Synthesis by Non-parametric Sampling
A non-parametric method for texture synthesis is proposed. The texture synthesis process grows a new image outward from an initial seed, one pixel at a time. A Markov random field model is assumed, and the conditional distribution of a pixel given all its neighbors synthesized so far is estimated by querying the sample image and finding all similar neighborhoods. The degree of randomness is con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Graphics
سال: 2016
ISSN: 0730-0301,1557-7368
DOI: 10.1145/2897824.2925917